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[1] Our ability to forecast the role of ecosystem processes in mitigating global
greenhouse effects relies on understanding the driving forces on terrestrial C dynamics.
This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in
the northwest Great Plains. SOC source-sink relationships were quantified using the
General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly
located 10 � 10 km2 sample blocks. These sample blocks were aggregated into cropland,
grassland, and forestland groups based on land cover composition within each sample
block. Canonical correlation analysis indicated that SOC source-sink relationship from
1973 to 2000 was significantly related to the land cover type while the change rates
mainly depended on the baseline SOC level and annual precipitation. Of all selected
driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for
the forestland and cropland groups, while annual precipitation determined the C
source-sink relationship for the grassland group in which noticeable SOC sink strength
was attributed to the conversion from cropped area to grass cover. Canonical correlation
analysis also showed that grassland ecosystems are more complicated than others in the
ecoregion, which may be difficult to identify on a field scale. Current model simulations
need further adjustments to the model input variables for the grass cover-dominated
ecosystems in the ecoregion.
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1. Introduction

[2] The spatial variability in ecosystem attributes present
at landscape scales allows investigators to explore correla-
tions between controls and response variables across broad
regions and thereby to predict the response of ecosystems to
global climate change. Parton et al. [1987] analyzed the
factors controlling soil organic matter (SOM) levels in the
Great Plains grasslands and found that the steady-state SOM
level is a function of temperature, moisture, soil texture, and
plant lignin. Their research laid a foundation for the
development of the CENTURY SOM model [Parton et
al., 1993], which is widely used to estimate soil organic
carbon (SOC) stocks on various spatial scales. However,
Burke et al. [1997] pointed out that many of possible control
factors covary with one another, and only some of the
important factors actually exist in regional databases. Thus

the true proximal controls may be difficult to identify on
regional spatial scales. The simulation results of Burke et al.
[1997] and the field observations of Lauenroth and Sala
[1992] questioned the applicability of space-for-time sub-
stitutions when dealing with ecosystem function. On the
basis of the investigation of spatial and temporal variations
in net primary production and nitrogen (N) mineralization in
the Great Plains grasslands, Burke et al. [1997] speculated
that the structure of the systems may provide important
constraints on their temporal variability that are not evident
in an analysis of spatial variability, and that models describ-
ing spatial variability may not be appropriate to characterize
temporal variability.
[3] Tan et al. [2005] reported that the SOC budgets and

change rates over time in the northwest Great Plains were
significantly correlated not only to the areal ratio of grass-
land to cropland, but also to the baseline SOC stock level.
Moreover, the relationships of total SOC stock to each SOC
fraction pool on the spatial scale differ significantly from
those on the temporal scale. These results suggest that the
baseline SOM level and fraction pools influence soil
C trends.
[4] It is recognized that land use and land cover change

(LUCC) plays an essential role in terrestrial C cycles
[Houghton et al., 1997, 1999] and global climate change
[Dale, 1997; Loveland et al., 2002]. First, these changes
potentially transform the structure and function of ecosys-

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 20, GB4012, doi:10.1029/2005GB002610, 2006
Click
Here

for

Full
Article

1South Dakota Center for Biocomplexity Studies, Brookings, South
Dakota, USA.

2Now at SAIC, USGS Center for Earth Resources Observation and
Science (EROS), Sioux Falls, South Dakota, USA.

3SAIC, USGS Center for Earth Resources Observation and Science
(EROS), Sioux Falls, South Dakota, USA.

4USGS Center for Earth Resources Observation and Science (EROS),
Sioux Falls, South Dakota, USA.

Copyright 2006 by the American Geophysical Union.
0886-6236/06/2005GB002610$12.00

GB4012 1 of 9

http://dx.doi.org/10.1029/2005GB002610


tems and alter the biogeochemical processes [Post and
Kwon, 2000; Reiners et al., 2002; Liu et al., 2004b].
Second, LUCC has had a much greater impact on ecological
variables than have climate changes [Dale, 1997]. Therefore
driving forces associated with historical LUCC are required
to properly evaluate terrestrial C dynamics, even though this
kind of information is difficult to obtain over large areas.
[5] Despite the importance of LUCC in terrestrial

C cycles, the quantitative relationships between terrestrial
C budgets and LUCC trends are still poorly understood
owing to the limited capability of current process-based
models used to integrate spatial data with historical LUCC
information and minimize simulation uncertainties for large
areas [Liu et al., 2004b]. Moreover, the relationships are not
clear between the factors governing spatial variation and the
controls responsible for temporal trends of terrestrial
C fluxes. Current approaches, either direct measurements
or process-based models, deal with individual ecosystem
sectors separately. Thus they are incapable of including the
interactions among individual ecosystems into an analysis
of ecosystem controls for a whole ecoregion. The integra-
tion of historical LUCC information into model simulations
contributes to an understanding of the actual controls on
terrestrial C changes and the feedback on climate, since

LUCC patterns and trends result from interactions among
economic, environmental, social, political, and technologi-
cal forces on local to global scales [Loveland et al., 2002].
This study evaluated controls governing SOC dynamics
over the period from 1973 to 2000 for major ecosystems
in the northwest Great Plains of the United States.

2. Materials and Methods

2.1. Study Area

[6] The northwest Great Plains or Ecoregion 43 includes
the parts of western South Dakota, southwestern North
Dakota, southeastern Montana, and northeastern Wyoming,
and covers an area of 338,718 km2 (Figure 1). The average
annual precipitation from 1973 to 2000 was 399 mm and the
average annual temperature was 7.2�C. The annual maxi-
mum and minimum temperatures were 0.74 and 0.59�C
higher between 1986 and 2000 than between 1973 and
1985, respectively. Land cover is dominated by mixed
grasses, but agriculture is the primary land use transforming
the grassland-dominated ecosystems. From 1973 through
2000, grass cover, cropped area, and forestry accounted for
75%, 17%, and 3%, respectively, of the total ecoregion area
(Table 1). The cumulative change in land cover during the

Figure 1. The northwest Great Plains ecoregion and sample block locations (integer numbers are the
sample block IDs). (The IDs of sample blocks with ‘‘c’’ in blue refer to the cropland group, those with
‘‘f’’ in red refer to the forestland group, and the others are the grassland group.)

GB4012 TAN ET AL.: CONTROLS ON SOIL CARBON DYNAMICS

2 of 9

GB4012



period affected about 10% of the land area, but most of
these changes were directly related to conversions between
cropland and grassland, especially between 1986 and 2000
as a result of the Conservation Reserve Program (CRP) [Tan
et al., 2005].

2.2. Model Initialization and Simulation

2.2.1. General Ensemble Biogeochemical Modeling
System
[7] The General Ensemble Biogeochemical Modeling

System (GEMS) [Liu et al., 2004a, 2004b] was used to
simulate soil C dynamics in this study.
[8] GEMS is designed for regional-scale C estimation by

integrating spatially explicit time-series LUCC change data
into its simulations. As described by Liu et al. [2004a,
2004b], GEMS consists of three major components: single
or multiple encapsulated ecosystem biogeochemical models,
an automated stochastic parameterization system (AMPS),
and an input/output processor (IOP). AMPS includes two
major interdependent parts: the data search and retrieval
algorithms and the data processing mechanisms. The first
part searches for and retrieves relevant information from
various databases according to the keys provided by a joint
frequency distribution (JFD) table [Reiners et al., 2002; Liu et
al., 2004b]. The data processing mechanisms downscale the
aggregated information at the map-unit level to the field scale
using a Monte Carlo approach. Once the data are assimilated,
they are injected into the modeling processes through the IOP
which updates the default input files with the assimilated data.
Values of selected output variables are also written by the IOP
toa set ofoutput files after eachmodel execution.TheJFDgrids
are first created from soil maps, a time series of land cover
images, and climate themes at a cell size of 60 m � 60 m.
[9] The spatial simulation unit of GEMS is a JFD case.

A JFD case contains single or multiple, homogeneous,
connected or isolated land pixels that represent a unique
combination of values from the environmental Geographic
Information System (GIS) layers used in an overlay ope-
ration [Liu et al., 2004a]. These GIS layers include five
dated land cover themes, soil and climate coverages, nitro-
gen (N) deposition map, and administrative districts. GEMS
automates the processes of downscaling forest ages from the
USDA Forest Inventory and Analysis data (FIA), crop
compositions from the Agricultural Census, grass cover

distribution and temporal changes from the remotely sensed
imagery interpretation, and soil properties using a set of
Monte Carlo processes. An ensemble simulation technique
is employed to incorporate the uncertainties from the Monte
Carlo processes.
[10] The data for model inputs primarily consisted of

climatic regimes, LUCC, and soil inventory. The LUCC
data were provided by the research team of the USGS Land
Cover Trends Project [Loveland et al., 2002]. Climatic data
included annual precipitation and maximum and minimum
temperature records from 1973 through 2000. They were
converted to 30-m pixel GIS coverages from the CRU TS
2.0 data sets (available at http://www.cru.uea.ac.uk/cru/data/
hrg.htm). Soil characteristics within each sample block were
adapted from the U.S. State Soil Geographic Data Base
(STATSGO) [USDA-NRCS, 1994] for initializing the soil
components of GEMS.
2.2.2. Model Initialization
2.2.2.1. Crop Cultivation and Management
[11] In order to create JFDs for cropland, the Monte Carlo

method was used to determine crop composition, on the
basis of state-level averages of agricultural census data,
because no detailed records exist for when and where crop
species are planted in an ecoregion. Crop composition was
assigned every five years following census data. As initial-
ized for forest age [Liu et al., 2004b], a crop species with a
higher area percentage in the census data is more likely to
be selected for simulation in the model. Between census
times, crop rotation was specified on the basis of a transition
probability table derived from census data. For example, if a
JFD is assigned with spring wheat in the first year in one
possible rotation, a 50% probability for spring wheat would
follow in the next year, a 30% probability would be corn,
and a 20% probability for other crops. We did not include
the tillage management due to the difficulty in specifying
the spatial distribution of county level data.
2.2.2.2. Grassland and Forestland
[12] Conversion between cropland and grassland has

been a major land surface disturbance to grassland in the
Ecoregion. Especially, the Conservation Reserve Program
(CRP) since 1986 has stimulated conversion of cropped
areas to grasslands, which may substantially shape the SOC
dynamics. Fortunately, such conversions are detectable and
accountable with time series remotely sensed images. For

Table 1. Summary of Preliminary Results for Basic Variables in the Northwest Great Plains

Group of
Blocks

Number of
Blocks Mean/Stdera

Crop,b

%
Forest,b

%
Grass,b

%
Precip.,
mm yr�1

Temperature, �C yr�1
Baseline in
1973, g m�2

Change,c %
1973–2000

Max Min Mean SOC SON SOC

Cropland 15 Mean 38.6 0.9 59.3 411 13.3 0.0 6.5 5823 481 �0.5
Stder 6.1 0.4 5.9 11 0.3 0.1 0.2 475 40 1.7

Forestland 7 Mean 8.6 12.4 77.6 364 14.6 0.2 7.3 4854 395 1.8
Stder 2.5 0.9 2.3 12 0.4 0.4 0.3 536 45 1.7

Grassland 18 Mean 2.8 0.5 94.4 404 15.1 0.0 7.7 3942 312 10.8
Stder 0.8 0.3 0.7 9 0.3 0.2 0.2 199 16 1.4

Ecoregion 40 Mean 16.9 2.7 75.5 399 14.4 0.0 7.2 4807 390 5.3
Stder 0.2 0.0 0.2 6 0.2 0.1 0.2 250 21 1.3

aStandard error.
bThe percentage averaged from 1973 through 2000.
cBased on the baseline SOC stock in 1973.
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other management practices such as grazing and fertiliza-
tion, an average level for each was randomly assigned due
to the lack of spatially explicit data on an ecoregion scale.
Forestland was a small proportion of the total land area
(about 2.7%); therefore the approach proposed by Liu et al.
[2004a] was used to initialize forest age and biomass for
model simulations.
2.2.2.3. Soil Characteristic Extraction and SOC Pool
Partitioning
[13] Any JFD case uses soil information from a STATSGO

map unit that contains different soil characteristics. A Monte
Carlo method was used to assign each JFD a set of specific
soil property values such as layer depth, soil organic matter
content, soil water holding capacity, and clay and sand
percentages. Soils with high SOC contents are usually
fertile and likely lead to high net primary productivity
(NPP), which may cause high C release. Therefore it is
important to properly partition SOC storage into different
pools at the beginning of each simulation. Previously, the
initialization of each SOC pool required a spinup simulation
over a long-term to find a soil C equilibrium for undisturbed
vegetation. The reconstructed disturbance history was then
used to get a close estimate of the SOC pools. This requires
informative historical data which are usually not available
for a large area. By testing the model structure, we found
that the slow SOC pool is almost linearly proportional to the
NPP level. This result was noticed by Paustian et al. [1995]
who observed a linear relationship between SOC level and
C input from plant residues. On the basis of these findings,
we used a retrospective SOC initialization algorithm to
define the slow SOC pool on the basis of the NPP for each
land cover type and soil inventory data. The difference
between the total SOC and the slow pool was then used to
initialize the passive SOC pool. The active SOC pool was
set at about 2% of the total SOC storage.
2.2.3. Ensemble Simulations
[14] GEMS generates site-level inputs with a Monte Carlo

approach from regional data sets. Any single simulation of a
JFD case is unique combination of randomly picked forest
age, crop species, and soil properties from regional-level
data sets, so that the output of a single simulation run of a
JFD might be biased. Therefore ensemble simulations of
each JFD were executed to incorporate the variability of
inputs and to average uncertainties of simulation results. In
general, averages of ensemble simulations become more
stable when increasing the run number. We made 20 repeat
runs for each JFD case in this study, which reduced the
relative error to about 2%. The averaged JFD output from
the 20 runs was then aggregated on sample block scale, and
the simulation uncertainty was evaluated on both sample
block and the ecoregion scales.

2.3. Sample Blocks

[15] Forty sample blocks of 10 km � 10 km, randomly
selected within the ecoregion by Loveland et al. [2002]
(Figure 1), were used to identify changes with 1% precision
at an 85% confidence level. The changes were detected on
the basis of five calendar years (1973, 1980, 1986, 1992,
and 2000) of Landsat Multispectral Scanner (MSS) and
Thematic Mapper (TM) image data. They were analyzed at

a cell size of 60 m� 60 m for MSS images and 30 m� 30 m
for TM images.

2.4. Data Analyses

[16] Our preliminary study showed that the SOC dynam-
ics were differentiated by the land cover composition within
each sample block. Therefore the summarization and anal-
yses of model outputs were conducted with sample block
groups defined sequentially using the average land cover
proportions between 1973 and 2000 as follows: forestland
group if the forested area in a sample block was equal or
greater than 10%, regardless of the other land cover pro-
portions; then cropland group if the areal proportion of the
cropped area in the sample blocks was greater than 10%;
finally, remaining blocks were assigned to the grassland
group. Seven of the sample blocks fell into the forestland
group, fifteen into the cropland group, and eighteen into the
grassland group (Figure 1 and Table 1). We used sample
block groups as data aggregation units, and analyzed them
for a time series from 1973 through 2000. The C stocks in g
C m�2 were defined as the total SOC pools in the 0 to 20 cm
depth of soil. The SOC change was determined as the
difference in SOC stocks between 1973 and 2000.
[17] Multiple regression analysis was conducted using

SAS [SAS Institute, 2003] to examine the dependency of
the SOC change between 1973 and 2000 upon selected
explanatory variables (Table 1). Canonical correlation anal-
ysis (CCA) was run to identify the dominant associations
between sets of control and response variables, and to
determine the extent to which the variation of response
variables could be attributed to controls [Töth et al., 1995;
Dieleman et al., 2000].

3. Results and Discussion

3.1. Soil Organic C Source-Sink Relationships
Between 1973 and 2000

[18] The results presented in Table 1 show large differ-
ences in SOC changes among the three sample block
groups. On average, there was 0.5% decrease in SOC stock
for the cropland group from 1973 to 2000, and 1.8% and
10.8% increases for the forestland group and grassland
group, respectively. However, these changes varied signif-
icantly among sample blocks within each land cover group
(Figure 2). Carbon sources were mainly associated with the
sample blocks where cropped area proportion was domi-
nant, and C sinks typically occurred in the sample blocks
where grass cover was prevalent. As shown in Figure 2,
larger sinks were associated with sample blocks where the
average baseline SOC levels were lower; whereas larger
sources were linked to the sample blocks with higher
baseline SOC levels. Carbon sinks or sources were domi-
nantly attributed to changes in the slow and labile C pools,
especially for the sample blocks with C sources.

3.2. Forces Driving SOC Dynamics

3.2.1. Baseline SOC Stock
[19] As illustrated in Figure 3, the strength of SOC sinks

or sources was proportional to the baseline SOC stock level.
The rate of SOC augmentation tended to decline with an
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increase in high baseline SOC levels. As observed by
Conant et al. [2003] and Tan and Lal [2005], higher C
sequestration rates are associated with soils having most
recently undergone conservation management, but the rates
tend to decrease with time. These results suggest that either
C sinks or sources for individual ecosystems are to a great
extent dependent on the baseline SOC stock level, which is
also seen from the changes in the slow fraction pool
(Figure 2).
3.2.2. Land Cover Composition
[20] Cropped area proportion in five sample blocks (02,

04, 20, 22, and 30) of the 15 blocks in the cropland group
was greater than 50% of the block area. The average grass
cover proportion across a sample block in the grassland
group accounted for 94% of the block area. The change in
all land cover types within the ecoregion took place at an
average annual rate of 0.35% between 1973 and 2000
[Tan et al., 2005] and there were significant differences
among sample blocks. For example, 1.34% and 1.02%

annual changes occurred within sample blocks 04 and 20,
respectively. As mentioned above, the principal LUCC in
the ecoregion was the conversion between cropland and
grassland. Therefore we used the change in land cover
composition ratio of both grass and crop covers to represent
land cover dynamics. On the sample block scale, we
observed that the SOC changes between 1973 and 2000
were logarithmically proportional to the areal ratio of grass
cover to cropland (Figure 4); the C sources became stronger
whenever the ratio was below 2, as proposed by Tan et al.
[2005], supporting the hypothesis that the conversion from
grassland to cropland likely accelerates SOC depletion.
3.2.3. Differences in SOC Dynamics Among Three
Sample Block Groups
[21] The changes in SOC stocks over time were illustrated

by land cover composition groups in Figure 5. The cropland
group (with an average cropped area proportion of 39%)
had an average baseline SOC stock of 5823 g C m�2 and
was a small C source (3.9 g C m�2) over the 28-year span.

Figure 2. Changes in total soil organic C (SOC) and slow C pools between 1973 and 2000 and their
relations to the baseline SOC stock in the ecoregion (presented in the descending order of change rates).
The changes (%) in the SOC and slow C pools between 1973 and 2000 were based on the baseline SOC
stock for each sample block in 1973.

Figure 3. SOC change rates from 1993 to 2000 in relation
to the baseline SOC stock in 1973, illustrated by 40 sample
blocks.

Figure 4. Effects of land cover composition on soil
organic C sink-source relationships between 1973 and
2000 for sample blocks where cropped area percentage was
>10% (positive SOC change represents a C sink).
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The grassland group had the largest C sink strength (14.9 g
C m�2) probably because of the low baseline SOC level
(3942 g C m�2) and other contributors (see discussion
below). Both the baseline and the change rate of SOC stock
showed significant differences among these three groups of
sample blocks (p < 0.05). Note that the baseline SOC data
from STATSGO was not based on land cover types; land
cover distribution is usually oriented to human needs.
Croplands are generally located on Mollisols and some
Vertisols where the SOC contents are high and the relief
is level or gentle sloping. Forestlands are mainly located on
Aridisols and Alfisols. Grasslands are primarily located on
Entisols and Inceptisols in southwestern part of the eco-
region, where there is less SOC storage owing to steep
slopes and sparse vegetation cover in comparison with

forested and cropped areas. Again, some portion (<10%)
of cropped areas existed within the grassland group and
some defined grass cover was converted from previous
cropland.As indicated by Figure 1, croplands are sporadically
distributed within grasslands. They have higher fertility and
biophysical settings that favor crop production relative to
neighboring parcels. These sparsely cropped parcels were
also prone to be included in the CRP and converted to
grassland, which would enhance C sequestration due to the
reduced disturbance under grass cover. As a result of the
conversions, the C sink strength was 35% higher between
1986 and 2000 than between 1972 and 1986 (and C source
strength on croplands decreased from 7.0 g C m�2yr�1 to
1.0 g C m�2yr�1). This, along with the data in Figure 6,
suggests that the higher C sink strength in the grassland

Figure 5. Temporal variation of soil organic C and uncertainty as related to land cover composition
(sample block group) in the ecoregion (error bars are standard errors).

Figure 6. SOC pool trends over time as related to the conversion between grassland and cropland in
sample block 3. Embedded graph indicates the land cover change detected from remotely sensed images
of five dates.
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group could be, to a great extent, attributed to the
conversion from crop cultivation to grass cover.

3.3. Evaluation of Controls

3.3.1. Multiple Regression Analysis
[22] To test the hypothesis that changes in SOC stock

between 1973 and 2000 were mainly a function of land
cover composition, climate variables, and the baseline levels
of SOC and SON stocks, we conducted a linear regression
analysis. The difference in SOC stock can be well predicted
using these variables in following equation:

SOCD ¼ � 537� 0:06 SOCbsð Þ � 0:72 SONbsð Þ þ 8:1 Grsð Þ
þ 1:9 PPTð Þ � 8:5 Tmaxð Þ þ 31 Tminð Þ
p < 0:0001;R2 ¼ 0:90; n ¼ 40
� �

; ð1Þ

where SOCD is the difference in SOC stock between 1973
and 2000 (g C m�2) estimated on the basis of all 40 sample
blocks; SOCbs and SONbs are the baseline stocks of
respective SOC and SON in 1973 (g C m�2); Grs is the
areal percentage of grassland (%) for the period from 1973
through 2000; PPT is average annual precipitation (mm);
Tmax and Tmin are the average maximum and minimum
monthly temperature (�C), respectively.
[23] Equation (1) indicates that more precipitation, higher

minimum temperature, and larger proportion of grass cover

favored the SOC accumulation in the ecoregion, while the
rate was negatively correlated to the baseline soil organic
matter stock and the maximum temperature. The power
analysis shows that, of these variables, the grass cover
proportion, baseline SOC stock and annual precipitation
played a dominant role in the SOC budget. The influences
of the other factors are very limited. The power index
magnitude order is: SOCbs (1.0) = Grs (1.0) � Rain
(0.99) � SONbs (0.25) > Tmin (0.12) > Tmax (0.05).
3.3.2. Canonical Correlation Analysis
[24] Although SOC changes could be well predicted by

the variables listed in equation (1), we cannot judge the
importance of each variable to the response. Therefore a
canonical correlation analysis was conducted for this pur-
pose. The magnitude and sign of a standardized canonical
coefficient (SCC) indicates the contribution of a control
variable to its canonical variate [Dieleman et al., 2000; Tan
et al., 2004]. The first canonical variate of control variables
for each sample block group was expressed by its original
control variables as presented in Table 2. We used baseline
SOC and SON stocks, grass cover proportion, cropped areal
proportion, annual precipitation, and minimum and maxi-
mum temperature regimes as the control variables to explain
the variance of the SOC change from 1973 to 2000. We
found that these control variables explained 90% of such
variance at p < 0.0001 level. Of all selected controls, the
areal proportion of grass cover played an important role in
determining C sources or sinks overall, but the C sink
strength tended to become weaker with an increase in the
baseline SOC and SON levels. In other words, C sources
more likely occur in soils with higher baseline SOC and
SON contents. This conclusion is consistent with the
conclusion drawn by other researchers [Jastrow and Miller,
1997; Six et al., 2002; West and Post, 2002; Tan and Lal,
2005; Tan et al., 2005].
[25] Further analyses showed that the controls on and

their importance to the C source-sink relationship varied
with different sample block groups (Table 2). For the cropland
group, the SOC budget was mainly related to the baseline
SOC contents, followed by the baseline SON, the ratio of
cropped area to grass cover, and annual precipitation in
descending order of importance. And the C sink strength
likely increased with baseline SON and annual precipitation,
whereas the C sources tended to occur in soils with high
baseline SOC because high C soils are likely choose for
cropland. For the forestland group, both baseline SOC and
SON predominate the soil C source-sink relationship even
though higher forest cover proportion and temperature
regimes would favor C accumulation in soils with either
higher baseline SON levels or lower baseline SOC stocks.
[26] For the grassland group, the annual precipitation was

the most important force driving the SOC budget. A high
annual precipitation along with a high minimum tempera-
ture regime would enhance soil C sequestration, but the sink
strength could be weakened in either cropped areas or in
soils with high baseline SON contents. The combination of
all variables explained only 73% of the standardized vari-
ance of SOC change (Table 2). Note that similar controls on
SOC change (shown by the canonical correlation analysis
listed in Table 2 for these three sample block groups) do not

Table 2. Standardized Canonical Coefficients (SCC) for the

Controls on SOC Stock Change Between 1973 and 2000 in the

Ecoregiona

Group of Blocks Control SCC

Standardized Variance of
SOC Change Explained By

Canonical Variables of Controls

Ecoregion Grass 0.52 90%, p < 0.0001
SONbs �0.29 90%, p < 0.0001
SOCbs �0.27 90%, p < 0.0001
PPT 0.23 90%, p < 0.0001
Tmin 0.07 90%, p < 0.0001
Tmax �0.03 90%, p < 0.0001

Cropland SOCbs �1.32 90%, p = 0.0012
SONbs 0.58 90%, p = 0.0012
CGR �0.40 90%, p = 0.0012
PPT 0.34 90%, p = 0.0012
Tmin �0.13 90%, p = 0.0012
Tmax 0.02 90%, p = 0.0012

Forestland SONbs 6.39 100%
SOCbs �5.88 100%
Forest 0.74 100%
Tmax 0.62 100%
Tmin 0.21 100%
PPT �0.05 100%

Grassland PPT 0.81 73%, p = 0.03
Crop �0.59 73%, p = 0.03
SONbs �0.46 73%, p = 0.03
Tmin 0.38 73%, p = 0.03
Grass 0.13 73%, p = 0.03
SOCbs �0.13 73%, p = 0.03
Tmax �0.09 73%, p = 0.03

aCrop, cropland areal percentage; GCR, areal ratio of grassland over
cropland; Grass, grassland areal percentage; Forest, forestland areal
percentage; Tmax, annual mean maximum temperature (�C); Tmin, average
annual minimum temperature (�C); PPT, annual precipitation (mm yr�1);
SCC, standardized canonical coefficient; SOCbs, total soil organic carbon
(g C m�2); SONbs, total soil organic nitrogen (g N m�2).
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necessarily mean that management measures have little
impact on C dynamics. Each of these sample block groups
was a mosaic of different land cover types in which the
C sequestration enhanced by one measure could be offset by
the C depletion induced by another.
[27] It is understandable that the cropping-dominated

ecosystem is the most extensively managed since chemicals
and irrigation would be preferentially used to control
biomass and ameliorate climatic effects. For example, the
irrigated cropland in 1998 was 29% of all harvested cropland
area for the ecoregion and >50% across North Dakota state
(http://www.ers.usda.gov/Data/WesternIrrigation/). The for-
est ecosystem generally experiences the least human-induced
disturbance and its SOC dynamics would be more likely
driven by nonmanagement factors. In comparison to the
above two ecosystems, the SOM retention on grassland
would be much more influenced by complex relationships
among climate, soil microbes, grass species, and livestock;
additionally, the aboveground biomass and the belowground
organic matter accumulation are more dependent upon cli-
mate regimes. Meanwhile, the SOC depletion induced by
erosion on grassland may be more serious than on forestland
and cropland owing to the differences in the combination of
surface cover and relief. For example, grasslands are usually
on the steeper slopes in comparison to croplands. A consid-
erable unexplained variance for the grassland block group
(27%)may be attributed to variables which were not included
in themodel inputs.Moreover, the uncertainties of the driving
forces associated with the native grass distribution and
varying grazing intensities make the grassland ecosystems
more complicated than both the forest and cropping
ecosystems in this ecoregion. In other words, the con-
ventional paradigm that grassland ecosystems are simpler
than either forestland or cropland ecosystems may only
be true on the field scale, not on landscape or regional
scales.
[28] Our analysis showed that the baseline SOC level is a

good predictor of soil C dynamics. Probably, SOM storage
collectively results from long-term interactions of climate
variables (precipitation and temperature), vegetation
(lignin), relief (drainage condition), and soil parent materials
(geologic origin and texture) [Jenny, 1980; Parton et al.,
1987; Schimel et al., 1994; Tan et al., 2003]. The data in
Table 2 suggest that SOC change depends more upon the
baseline SOC level than other factors for the described
historical land use scenarios, which is particularly explicit
for the forestland group. However, this does not mean that
LUCC or conversions between land covers are not critical to
soil C dynamics. Instead, it underscores the importance of
the proportion of changes in the land cover within the entire
region, even though the changes in C stocks are usually
stimulated by land cover change, and the direction of
conversion between grassland and cropland likely deter-
mines whether a site is a sink or a source [Tan et al., 2005].
Applying a Monte Carlo approach, randomly selected
reference SOC stocks, and management factors to the IPCC
model, Ogle et al. [2003] reported that losses of SOC from
1982 to 1997 on US agricultural lands were mainly from
managed organic soils and gains came from managed
mineral soils. Their results, along with those from the

cropland group in this study (Table 1), suggest that soils
with higher baseline C stocks tend to become larger
C sources under cultivation, and soils with lower baseline
C levels likely become C sinks with conservation and
improved management practices. A similar conclusion
was also drawn by Tan and Lal [2005] on the basis of field
observations in the north-central U.S.
[29] Cannell and Thornley [1998] and Reich et al. [2001]

reported that the N-poor grasslands tend to undergo a larger
long-term response to elevated CO2 owing to a slower
N accumulation coupled with lesser N leaching, decreased
gaseous N loss, and increased N2 fixation. Additionally, if
more explanatory variables were involved in model inputs,
the magnitudes and signs of SCC values for respective
variables could be altered. These may be the reasons why
the baseline SON level showed a negative relation to the
change rate of total SOC stock on the grassland group for
the modeled time span.
[30] The role of climatic variables in SOC dynamics for

large areas is widely recognized. Generally, SOC stocks
increase with precipitation and decrease with temperature
[Jenny, 1980; Burke et al., 1989]. In the temperate forest-
land of Minnesota, Wisconsin, and Michigan, SOC stocks
increase with mean annual precipitation [Grigal and
Ohmann, 1992]. Across the Great Plains Grassland, SOC
stocks are positively correlated with annual precipitation
and negatively correlated with annual mean temperature
[Burke et al., 1989]. However, the climatic impacts seem to
be complicated for the study area because they may have
been reflected in the baseline SOM levels. Meanwhile, the
interpretation of temperature effects on SOC change may
need to consider the influence of temperature regimes on
vegetation net primary production. In this ecoregion, mean
annual temperature is only 7.1�C, ranging from 0.0� to
14.4�C; the mean annual maximum temperature is lower
than the optimal temperature range for plant growth. An
elevation in maximum temperature in this ecoregion could
enhance biomass production more than consumption by
respiration. An increase in minimum temperature would
lead to an increase in SOC stock for the grassland group,
since higher minimum temperature likely leads to a longer
growing season and higher biomass. Overall, our results
agree with the conclusion that generally weak relationships
between climatic variables and SOC stocks on a regional
scale make it difficult to predict changes in SOC stock as a
function of projected climate change only [Kern et al.,
1998].

3.4. Model Validation

[31] GEMS simulates C biogeochemical processes on
both spatial and temporal scales, and is based on applying
the well-established CENTURY SOM model in space using
the JFD of major driving variables of the C cycle [Liu et al.,
2004a, 2004b]. The inputs for and outputs from GEMS
simulations are more representative of the spatial and
temporal heterogeneity of the driving variables than those
based on the wall-to-wall simulation that ignores the spatial
explicitness and covariance of these variables for large areas
[Tan et al., 2005]. GEMS simulations were processed for
each case, consisting of a randomly chosen combination of
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land cover and soil taxon with respective inputs retrieved
from JFD files; each case was run 20 times to create outputs
weighted by area proportion of cases with standard devia-
tions. Uncertainties with the GEMS outputs also indicate that
40 sample blocks was enough to capture the general spatial
and temporal variability of C fluxes and pools across the
ecoregion. Conventional validation of GEMS is not possible
due to the lack of dynamic regional-scale SOC databases. It is
also impossible to validate GEMS simulation results using
limited point fieldmeasurements [Tan et al., 2005]. However,
the grain yields of major crops estimated from GEMS were
quite consistent with the statewide mean values provided by
the USDA National Agricultural Statistical Service [Tan et
al., 2005]. Moreover, a good match was observed between
the historical SOC trends and the temporal pattern of land
cover change (Figure 6). These results suggest the stability
and robustness of the GEMS-CENTURY model.
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